

Balls Rolling in Cones

New-ish examples of learning-by-contrast

Gary D. White
American Association of Physics Teachers and
The George Washington University gwhite@aapt.org, gwhite@gwu.edu

Physics of rolling

(rolling with friction, but no slipping)

- Rolling without slipping, scalar

$$
\mathrm{V}_{\mathrm{cm}}=\mathrm{R}^{*}(\mathrm{~d} \theta / \mathrm{dt})=\mathrm{R}^{*} \omega
$$

- Rolling without slipping, vector

$$
\mathbf{V}_{\mathrm{cm}}=\mathbf{R x} \omega=[\mathrm{d} \rho / \mathrm{dt}, \mathrm{rd} \phi / \mathrm{dt}, \mathrm{dz} / \mathrm{dt}]
$$

$\left[R \omega_{\phi} \cos (\theta)\right.$,
$-R \omega_{\rho} \cos (\theta)-R \omega_{z} \sin (\theta)$,
$\left.R \omega_{\phi} \sin (\theta)\right]$

Rolling on cones and other funnels like the Spandex is good for demonstrating celestial phenomena:

- Orbits, precession
- Escape velocity
- Planetary Rings
- Roche Limit
- Density differentiation
- Early solar system agglomeration models
- Binary systems
- Tidal Effects
- For details see the Spandex trilogy:

1) 'Modelling tidal effects' AJP 61(4), '93
2) 'The shape of the Spandex and orbits upon its surface', AJP 70(1), '02
3) 'On trajectories of rolling marbles in cones and other funnels $\mathbf{8 1}(12)$, '13
by GDW and students
NOTE: "Gravity wells" rather than "curved space-time" or "embedding diagrams"

From XKCD ${ }_{\text {anemomomicot ormanee }}$

 sarcasm, math, and language, http://xkcd.com/681/)
Gravity Wells

\square

...but to what extent are marbles rolling in gravity wells really like orbits in 3-D space?

planets	period, T	radius from sun, R	T-squared	R-squared	T-cubed	R-cubed
	(in years)	(in earth-sun distances)				
Mercury	0.241	0.387	0.0580	0.150	0.0140	0.058
Venus	0.616	0.723	0.379	0.523	0.2338	0.378
Earth	1	1	1	1	1.0000	1.000
Mars	1.88	1.52	3.54	2.321	6.65	3.54
Jupiter	11.9	5.20	141.6	27.1	1685.16	140.8
Saturn	29.5	9.54	870.3	91.0	25672.38	867.9

So, in natural units, $\mathrm{T}^{2}=\mathrm{R}^{3}$ for planets. (In unnatural units, T^{2} is merely proportional to R^{3})

Kepler from Newton

- Of course, Newton's Laws gave us a fuller understanding of Kepler's finding, for circular orbits:
$\Sigma \mathrm{F}=\mathrm{ma}$
$\Rightarrow-G M m / R^{2}=-\mathrm{mV}^{2} / \mathrm{R}$
but $v=2 \pi R / T$
$\Rightarrow \mathrm{T}_{\mathrm{tax}}^{2}$ is proportional to R^{3}
...and if the force law is different than inverse square, say if it is proportional to the reciprocal of the distance
(like stretched spandex) or to the cube root of the distance (like unstretched spandex) or to the distance itself (like in a cone) then we get similar proportionality laws analogous to Kepler's laws that hold on that particular surface...even for rollers, not just frictionless sliders---why?

More about scalar rolling...

modelling one dimensional oscillations with scalar rolling without slipping

- One-D motion
$E_{1 D}=\frac{1}{2} m V_{x}^{2}+U(x)$
Diff. wrt time to get

$$
0=\left\{m \ddot{x}+U^{\prime}(x)\right\} V_{x}
$$

Assume $x=x_{0}+\delta$, then
\qquad
$0=m \ddot{\delta}+U^{\prime}\left(x_{0}\right)+\delta U^{\prime \prime}\left(x_{0}\right)+\ldots$
So for small δ we get SHM with

$$
\Omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{U^{\prime \prime}\left(x_{0}\right)}{m}}
$$

More about scalar rolling...

modelling one dimensional oscillations with scalar rolling without slipping

- One-D motion
$E_{1 D}=\frac{1}{2} m V_{x}^{2}+U(x)$
Diff. wrt time to get

$$
0=\left\{m \ddot{x}+U^{\prime}(x)\right\} V_{x}
$$

Assume $x=x_{0}+\delta$, then
$0=m \ddot{\delta}+U^{\prime}\left(x_{0}\right)+\delta U^{\prime \prime}\left(x_{0}\right)+\ldots$
So for small δ we get SHM with

$$
\Omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{U^{\prime \prime}\left(x_{0}\right)}{m}}
$$

Rolling in a vertical plane in a valley given by $h(x)$:

$$
\begin{gathered}
E_{\text {roll }}=\frac{1}{2} m V_{x}^{2}+\frac{1}{2} m V_{y}^{2}+\frac{1}{2} I \omega^{2}+m g h(x) \\
\text { but } \\
\quad V_{y}=V_{x} \tan (\theta)=V_{x} h^{\prime}(x)
\end{gathered}
$$

and no-slip rolling means

$$
V^{2}=V_{x}^{2}+V_{y}^{2}=(a \omega)^{2}
$$

so

More about scalar rolling...

modelling one dimensional oscillations with scalar rolling without slipping

- One-D motion

$$
E_{1 D}=\frac{1}{2} m V_{x}^{2}+U(x)
$$

Rolling in a vertical plane

 in a valley given by $h(x)$:
Conclusion:

You can model motion of a mass at the end of a spring (1D $h(x)$ 1) the shape of the hill matche mass and 2) if you "adjust" the mass and " hill are "small" 0 3) if derivatives of the hill are "small"

SO $_{E_{m o l}=\left(\frac{1}{2} m\left(1+\frac{I}{m a^{2}}\right)\left(1+h^{2}(x)\right) V_{x}^{2}+\operatorname{mgg}^{2}(x)\right.}$

$$
\Omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{U^{\prime \prime}\left(x_{0}\right)}{m}}
$$

$$
\Omega_{\text {roll }}=\sqrt{\frac{k_{\text {roll }}}{m_{\text {roll }}}}=\sqrt{\frac{m g h^{\prime \prime}\left(x_{0}\right)}{\left(m+I / a^{2}\right)\left(1+h^{\prime 2}\left(x_{0}\right)\right)}}
$$

Now, vector rolling that is, lets consider modelling planar

 motion in space with rolling motion on a cone or Spandex funnel...)Write the energy as in the scalar case with some new orbital \& spin terms: $E_{2 D}=\frac{1}{2} m V_{\rho}^{2}+U(\rho)+L^{2} /\left(2 m \rho^{2}\right)+$ spin_terms Diff. wrt time, assuming $\quad \rho=R+\delta$
$-L^{2} /\left(m R_{0}^{3}\right)+3 L^{2} /\left(m R_{0}^{4}\right) \delta+\ldots$

$$
\Omega_{2 D-\text { oscillations }}=\sqrt{\frac{k}{m}}=\sqrt{\frac{U^{\prime \prime}\left(R_{0}\right)+3 L^{2} /\left(m R_{0}{ }^{4}\right)}{m}}
$$

Again, SHM , constant terms give orbital frequency,

$$
L^{2}=m R_{0}^{3} U^{\prime}\left(R_{0}\right) \rightarrow R_{0} \dot{\phi}_{\text {orbital }}^{2}=U^{\prime}\left(R_{0}\right) / m \rightarrow T^{2} \propto R_{0} / U^{\prime}\left(R_{0}\right)
$$

If $U \sim 1 / R o$, then we get Kepler's result: period square proportional to distance cubed
coefficient of δ gives frequency of smallo oscillations about orbit,

The details are a little complicated, but when rolling in a near-circular orbit in a cone we find

$$
E_{\text {rolling }}=\frac{1}{2}\left(m+I / a^{2}\right) V_{\rho}^{2}\left(1+h^{\prime 2}\right)+m g h(\rho)+\left(1+I\left(1+h^{\prime 2}\right) /\left(m a^{2}\right)\right)\left(L^{2} /\left(2 m \rho^{2}\right)+\right.
$$

$$
\left(I / a^{2}\right)\left(1+h^{\prime 2}\right)\left(a \omega_{z}\right)\left(\frac{L h^{\prime} / m}{\rho \sqrt{1+h^{\prime 2}}}+a \omega_{z}\right)
$$

leading to,

$$
\begin{array}{ll}
R_{0} \dot{\phi}_{\text {orbital }}^{2}=g h_{0}^{\prime} /\left(1+\frac{I}{m a^{2}} \frac{\cos (\alpha)}{\cos (\theta) \cos (\alpha-\theta)}\right) & R_{0} \dot{\phi}_{\text {orbital }}^{2}=U^{\prime}\left(R_{0}\right) / m \\
\begin{array}{l}
\text { Note the } \\
\text { dependence } \\
\text { on spipangle! }
\end{array} \quad \text { instead of Kepler's Law: } & R_{0}\left(\frac{T}{2 \pi}\right)^{2}=G M / R_{0}{ }^{2}
\end{array}
$$

The details are a little complicated, but when rolling in a near-circular orbit in a cone we find celestial orbit with a ball rolling on a cone or other funnel if
a

Conclusion:

The details are a little complicated, but when rolling in a near-circular orbit in a cone we find

 Better mass moving in a sheet of spandex or in and lots of fun point conclunnel if celestial exploring beside . You sion:1) the funnel sin how its dy difolling learn al at
2) if you
3) if yow

R_{d}

and havel's besia da mass
and exploring fun be point conc/unnel if fully selected, and
 for unstretched Spandex for circular orbits by doing some experiments...

- For fixed M, unstretched Spandex has
$\ln (T)=(1 / 3) \ln \left(R^{2}\right)+b$
- So, Spandex is $T^{3} / R^{2}=k$ instead of $\mathrm{T}^{2} / \mathrm{R}^{3}=\mathrm{c}$. notice how noisy the data is... Experimenters can impart different spins to the marbles resulting in slightly different periods of orbit for the same radius...Let's try it on these cones...

Kepler's Law analog

Rolling on cones and other funnels like the Spandex is good for demonstrating celestial phenomena:

- Orbits, precession
- Escape velocity
- Planetary Rings
- Roche Limit
- Density differentiation
- Early solar system agglomeration models
- Binary systems
- Tidal Effects
- For details see the Spandex trilogy:

1) 'Modelling tidal effects' AJP 61(4), '93
2) 'The shape of the Spandex and orbits upon its surface', AJP 70(1), '02
3) 'On trajectories of rolling marbles in cones and other funnels' 81(12), '13
by GDW and students
NOTE: "Gravity wells" rather than "curved space-time" or "embedding diagrams"

Thanks to

- My students, especially Michael Walker, Tony Mondragon, Dorothy Coates, Darren Slaughter, Brad Boyd, Kristen Russell, Matt Creighton, Michael Williams, Chris Gresham, Randall Gauthier.
- Society of Physics Students (SPS) interns Melissa Hoffmann and Meredith Woy
- Aaron Schuetz, Susan White, Doug Singleton, Kendra Redmond, and Thomas Olsen
- SPS staff, AIP, AAPT, NSF, NASA, Fresno State Physics Department and
- You!

